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ASYMPTOTIC ANALYSIS OF THE SPECTRAL NEUMANN PROBLEM IN
THICK MULTI-STRUCTURE OF TYPE 3:1:1

The spectral Neumann problem is considered in a thick multi-structure, which is the union of some
three-dimensional domain (the junction’s body) and a large number of s-periodically situated thin cylinders
along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour (as ¢ — 0)
of the eigenvalues and eigenfunctions is investigated. Three spectral problems form asymptotics for the
eigenvalues and eigenfunctions of this problem, namely, the spectral Neumann problem in junction’s body:
some spectral problem in a plane domain, which is filled up by the thin cylinders in the limit passage (each
eigenvalue of this problem has infinite multiplicity); and the spectral problem for some singular integral
operator given on the joint zone. The Hausdorff convergence of the spectrum is proved, the leading terms of
asymptotics are constructed (as £ — 0) and asymptotic estimates are justified for the eigenvalues and the
eigenfunctions.

1. Introduction and statement of the problem.

A thick multi-structure (or thick junctions) €. of type k : m : d is the union of some
domain €y € R" (junction’s body) and a large number of e-periodically situated thin domains
along some manifold (the joint zone) on the boundary of junction’s body. Here ¢ is a small
parameter and the type k : m : d of the junction refers to the limiting dimensions of the
body, the joint zone, and each attached thin domains. This classification was given by T.A.
Mel'nyk and S.A. Nazarov in [4]-[8].

Such multi-structures are prototypes of widely used engineering constructions such as
long bridges on supports, frameworks of houses, industrial installations, spaceship grids as
well as many other physical and biological systems with very distinct characteristic scales.

Thick junctions have special character of the connectedness, namely, there are points in
a thick junction. which are at a short distance of order O(s), but the length of all curves,
which connect these points in the junction, is order O(1). As a result, many new difficulties
appear in the asymptotic investigation of boundary value problems in thick multi-structures,
for example, the loss of the coercitivity of differential operators in the limit passage as e — 0,
the absence of extension operators that would be bounded uniformly in ¢ in the Sobolev space
W), the power behaviour of junction-layer solutions at infinity.

The goal of the study of boundary-value problems in thick multi-structures is to describe
the asymptotic behaviour of the solutions as ¢ — 0, i.e., when the number of attached
thin domains infinitely increases and their thickness vanishes. The reader can find extensive
reviews on this theme in [4]-[8].

It follows from these papers that the asymptotic behaviour of the solution to a boundary-
value problem in a thick junction essentially depends on the type of this junction. In addition,
the type determines the scheme of investigation. Thick multi-structures of types k : m : d,
where k—m # 1, are more strongly degenerated junctions and there were no full asymptotic
investigations of spectral problems and boundary-value problems in such thick junctions for
the present. If we consider some boundary value problem in a thick junction of type k : m :
d (k—m # 1), then any transmission conditions are not reasonable on the joint zone for the
corresponding limiting problems in the Sobolev space W.'. This is the principle difficulty in
contrast to boundary-value problems in thick junctions of types k :m :d, k —m = 1.

1.1. Statement of the problem. A model thick junction €. of type 3 :1: 1 consists
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of the body
Q={zeR: || <h, |zs|<b, —p(z') <z <0},

where 2’ = (21, 23), and a large number of e—periodically situated thin cylinders
Gile)={z: 0<zy <!, e (a1 —¢ej,x3) €w}s j=0,£1,...,%£N,

which are attached to the body along the segment I;, = {z : |z1| < h,zy = 23 = 0}, i.e.,
Q. = Qo U Gl(e), where G(e) = UIL_yGj(e). Here ¢ € C®([—h,h] x [-b,8]), ¢ > 1;
b>1: wis a plane domain with the smooth boundary and it is symmetric relative to the
axis {z; = 0}. In addition, (0,0) € w C {2’ : z? + 23 < py < 1/4}. The number N is
a large positive integer, therefore the value ¢ = 2h/(2N + 1) is a small parameter, which
characterizes the distance between the neighboring thin cylinders and their thickness.

The following spectral Neumann problem

—Aquifee) = Me) u(z,e), eIk duulz,e) =0, z€ 99, (1)

is considered in this paper. Here 9, = 0/dv is the derivative in the direction of outward
normal to the surface 0f)..

A spectral stiff problem in €. with concentrated masses on the thin cylinders was
studied by the author and S.A. Nazarov in [§]. In this problem, passage to the limit as
¢ — 0 was accompanied by mass concentration within each thin cylinder and by the infinite
increase of the stiffness of the cylinders. On the other hand, presence of a large parameter
in the transmission condition at the joint zone leads to some simplification, namely, the
corresponding limit spectral problem is reduced to the spectral problem for some singular
integral operator .J given on the segment I,. This operator acts in the Héormander spaces
Hige1(In) — Higg—1(I1). Only the low frequency convergence of the eigenvalues and some
series of the high frequency convergence of the spectrum were studied in [8].

As distinct from [8], three spectral problems form asymptotics of the eigenvalues and
eigenfunctions of problem (1), namely, the spectral Neumann problem in junction’s body
€29; the spectral problem in the rectangle D = I, x (0,1), which is filled up by the thin
cylinders in the limit passage (each eigenvalue of this problem has infinite multiplicity); and
the spectral problem for the integral operator .J.

1.2. The corresponding equivalent operator problem. As usual, A(¢) is an
eigenvalue of the problem (1) if there is a nonzero function (eigenfunction) u € H,. := H'(1.)
satisfying the integral identity

(u(-,€),v), = (A(e) + 1) (u(-,e ,v)gsg (2)

where (-,-). and (-,-)q, are the standard scalar products in H. and in L,(.) respectively.
Define the operator A, : H. — H. by the formula

(Acu, v)e =/ uwvdr forall u,veH.. (3)

It is easy to verify that this operator is self-adjoint, positive, and compact. Now we can
re-write problem (1) as the spectral problem for the operator A. :

Acu(-e) = (M) + 1) u(-e). (4)
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Thus, for each fixed ¢ all eigenvalues of problem (1) can be put in order
0= o(e) <Mle) L...EMp(e) £ +++ = 400 as n— +o0, (5)

with the classical convention of repeated values. The corresponding eigenfunctions can be
orthonormalized by the following way

f Un (T, €) U (z,6)dx + f sl e ol e e = 0p.ma. 1, )€ Ny, (6)
Qo .

where 6, ,, is the Kronecker symbol.
The aim is to study the asymptotic behaviour of the eigenvalues {\,(¢) : n € Ny} and
eigenfunctions {un,(-,€): n€ Ny} as ¢ = 0.

2. Formal asymptotic representations.

By virtue of the minimax principle for eigenvalues it is easy to prove the following

estimate _f | |2
Vol dz (ﬂ'n)g
p Lrd
=) = < :
el B e )

where FE,, is the set of all subspaces of H. with the dimension n.
Using inequality (7), condition (6) and the integral identity (2), we deduce the estimates
for the eigenfunctions

f Wu.(r,6))lde = X.(e) < 2Pl 2. (8)

The asymptotic behaviour of an eigenfunction of problem (1) depend essentially on the
energy concentration of the corresponding proper-oscillation. This energy is proportional
to the value [, |Vu,(z,¢)|*dz. Due to estimate (8) and condition (6), the energy of some
proper-oscillation is uniformly bounded with respect to & and can be concentrated either in
the junction’s body or in the thin cylinders or uniformly in these sets for £ small enough.

We fix the index n for A\,(¢) and u,. In what follows we don’t write this index. Having
observed that Lo-norm of some bounded function on the thin cylinders is order O(a%), we
propose the following asymptotic representations for the eigenfunction w :

(%]
i—1

U(l’:f)"“zi 2 :r (1, T2, ?—j —) (9)

k=0 =
in the thin cylinder G,(¢) (j =0,+1,...,£N);

o0

u(z,€) ~ vy (z) + Ze‘T Vi) (10)

k=2

in the junction’s body 2;

u(z,€) ~ wo(zs, ‘) + Z i 1(:{:1,
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near the joint zone Ij; and for the eigenvalue

Me) ~ 3T Taas. (12)

The expansions (9) and (10) are usually called outer ezpansions, the expansion (11) is called
inner erpansions.

REMARK 1. As we will show further, some coefficients of (9)-(12) depend on Ine. But, since
the power scale {E% : k € N} gives the main terms of the asymptotic behaviour, we will not
indicate the logarithmic dependence of these coefficients.

2.1. The limiting spectral problem in the junction’s body. Let the energy of
the corresponding proper-oscillation is concentrated in the junction’s body €, i.e.,

lim, o | |Vu(z,e)fPdz >0
Qo

(we recall the index n is omitted). Since the corresponding values A(¢) and ||u(-,¢)||5. are
bounded with respect to £, we can choose a subsequence of {¢} (still denoted by {¢}) such
that

u(-,e) > v~ #0 weakly in H'(€) and A(e) = u as ¢ — 0.

Passing to the limit in the integral identity (2) with a test function, which vanishes on the
thin cylinders and in a neighbourhood of the joint zone, we obtain that y is an eigenvalue
and v~ is the corresponding eigenfunction of the following spectral Neumann problem

-Av(z) = pv(z), x € Qy; gy (£)=0, zedl. (13)
[ts spectrum og, consists of non-decreasing sequence of finite-to-one eigenvalues

O=po<m<...< Uy <+++ > +o0. (14)

2.2. Limiting relations in the rectangle D = (—h,h) x (0,1). Assuming for the
moment that the functions v; it in (9) are smooth, we write their Taylor series with respect to

the first argument at the pomt x1 = je and pass the "fast"variables & = 7'y, & = 7 1xs.

Then (9) takes the form

u(e, ) ~ Zek‘%l--’kj 1 (22,6 — 7,&) + Zskv}f(mg,& - 7,&3), (15)
k=0 2 k=0
where . ;

Vi =l (o & —0.6), W =vf(ed o6 - 4.6), (16)
Vii=v" %(531332 bh—d. G+ Z po (ed, 22,61 — 5,8&), (17)

: = 1

k
o Nm amv-k Lo ' .
Vi = vf (e], 22,61 — 5, 63) + Z & ‘” o (€, %2, &1 = ,&3)- (18)
1

—il
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Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1

Here and further, the arguments of functions involved in calculations are indicated only if
their absence may cause confusion.

We substitute the series (15) and (12) in the equation of problem (1) and in the boundary
conditions on the lateral surface S;(c) of the cylinder Gj(g). Since the Laplace operator
takes the form A, = e 2Ag+ 0%/0x3 in the variables &= (&, &;) and z3, the collection of
coefficients of the same powers of ¢ brings to the following problems

AgVi b1 = in w(j) = {&: (& — 4,5) € w}h 6:;(5’)1’1:_1 =0 on ow(j), (19)

for k=0,1,2,3. Here O,¢) is the derivative along the normal v(&'), & € dw(j). It follows
from (19) that 1-"3.;1, k =0,1,2,3, are independent of &, &. Next we obtain the following
problems :

AV =B,V 4wV, in ), GV =0 on Bw(il  (20)

—AeVi =82, Vi + Vi + T%T.--’jg(zz) in w(j), OueyVd =0 on dw(j),  (21)

where 9, = 0/0z;, 02, zq = = §?/0x;0x,. The solvability conditions for the problems (20) and
(21) 1e5pec.tn«ei}, read as follows

where |w| is the Lebesgue measure of the plane domain w.

Taking into account (16) and the fact that the points ¢j, j = 0,%1,...,+N, form an
c—net for the interval I, = (—h, h), we can extend equations (22), defined initially on 2V +1
segments, to the entire rectangle D = (—h,h) x (0,1) :

Bty (1) = vty (2, ~Bn i (0) = @) + Tyt (@), €D (23)
Here 2° = (21, x3). In accordance with the Neumann conditions on the external bases of the
thin cylinders Go(e), G41(€), ..., Gn(€), we supplement (23) by the conditions

822;'1_1 (.’L'],I) =:{); 62@‘5"(;31,3) = 0, T € Ih. (2—1)
2

For other terms of asymptotic expansions (15) and (12) we can similarly obtain the
following recurrence relations

k
~& 0 Vi1 (@) = V01 (@) = Y (eemir Vo + Ty Vi), 22€ (0.0, (29)
2 0 2

k—1

- (Tk_mi.x;fl + Tk_m%l-';i_%), zo € (0,1), (26
m=0

and the following conditions 8,V (E) =0, &V/(l) =0; k€ Ny. As before we extend

these equations, defined initially on 2’V + 1 segments, to the interior of D.

622932 "k ‘rbﬂ?) = TOI';;cj(x?) ==l

2.3. The limiting spectral problem in the rectangle D. Comparing the first term
of the outer expansion (9) on the thin cylinders with the first term of the outer expansion

89



T. A. Mel'nyk

(10) in junction’s body, we conclude that v ! (1,0) =0, 1 € I;. In addition, v~ ! satisfies
the first relations (23) and (24). Thus, v~

following problem

must be either trivial or an elgenfunctlon of the

1
2

ag‘)xo ( T ) = TD 1_,(2-:0)! 'rD = (‘T"‘]bx?) E D;

W 8) =0, 0L ulry T =0, x € I. (27)
It should be noted that eigenvalues of problem (27) form the sequence
_ [{r2m =12 7
o=l e N 26)

and each eigemalua has infinite multiplicity. Indeed, for any function ¥ € C°°(I,,) the
function v(z°) = (1) ¢m(z2) satisfies the problem (27) if the function

Om(z2) =sin(rl™ (m— 27N 2,), z2 € (0,0). (29)

2.4. The limiting spectral problem for problem (1). Problems (13) and (27)
forms the limiting spectral problem for problem (1). Let us write the corresponding operator
spectral problem for the limit problem. Consider a Hilbert vector space Vy := Lo(€g) X Lo (D)
with the scalar product

(@, ﬁ)vﬂ =/s; uMyp®) dx+/£)u{2)v(2) dz°, Va= (v, u?), 7= (v, vP)e,.
0

By H, denote the following anisotropic Sobolev vector-space H'(Qg) x {u € Lo(D) : 30,,u €
Ly(D), u|;, =0} with the scalar product

(@), = (190 1 0+ [ (0t 0 +u®0) da?, VT, T € Ho
D

H1(Q0)
Define the linear operator Ay : Ho — Ho by the formula

(407,7),,, = (T,7),,, YT TeH.

It is easy to verify that 4, is bounded, self-adjoint and positive. Since the imbedding H, C V,
is not compact, the operator A, is non-compact.
The spectral problem 4,7 = (,u- + 1)_IE in H, is equivalent to the spectral problem

-AvNz) = povW(z), z€Q, &, ’L‘{U(ﬂ’? =4, =& all;

: : 30
—8;2*0(2](1130) = pvP(), 22 €D, v*(x,0) =8,vP(r1,l) =0, =z €I e
whose spectrum is the union og, Uop (the spectra of problems (13) and (27)). In this paper
we assume that o, Nop = 0.

2.5. Junction-layer problems. Take the thin cylinder Gy(e) and introduce the 3-
dimensional "rapid"variables £ = ¢~'z. After passage to € = 0, in the coordinates ¢ the set
Gj(e) transforms to the semi-infinite cylinder w x (0,+00), and the domain € to the half-
space {& : & < 0}. The periodic location of the thin cylinders suggests that the functions
of junction-layer type should be taken 1-periodic relative to &. Therefore, we consider the
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Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1

union II of the semi-cylinder [T, = {£ : & = (£,&) € w, & > 0} and the half-layer
- ={&: |&] < 1/2, & < 0} as the basic domain, where problems for the junction layer
will be posed. Let us investigate some properties of the solutions to the following junction-
layer problem

u(e)Z(é) = B(¢), €S =0I\w, i
.Z4(£,0) = 0, ¢ e RN ub €3, 5
@k Z( 2’52 £3) = a§12(+%3§2:§3)3 & <0, k=04
where v(€) = (1(£),12(¢')) is the outward normal derivative on S. To formulate the

existence theorem for problem (31) we introduce the "energy"space H(II), which is the
closure of the space Cg5%(IT) by the norm

; e 1/2
lull# = (||V£U||i2(n) +||d 1“”?52(1'1))
where d is a smooth weight function, positive in I _and it is equal to plnp for p = (€2 +
£2)V2 > 2 and & < 0, and to & for & > 2; Cg3(II) is a space of smooth function, which
are finite with respect to &, & and satisfy the last periodic condition in (31).

A function Z € H(II) is called a weak solution to problem (31) if for all functions v € H
the following integral identity holds: [, VeZ - Vevdé = [, Fvdé + [ Bvdog .

LEMMA 1. If dF € Ly(Il), dB € Ly(S), and

[H F(€) dt + /3 B(€) do¢ = 0. (32)

then there erists a weak solution Z € H(IT) to problem (31). The solution Z is defined up to
an additive constant.

The proof of this lemma repeats the proof of Theorem 1 in [10], Lemma 4.1 ([11]), and
Lemma 3.1 ([7]), where similar problems were considered.

REMARK 2. Due to the symmetry of IT, there exists a unique weak solution to problem (31),
which is even or odd relative to & if so are F' and B (see Remark 3.2 in [7]).

Similarly as in [10, 5, 11, 8], we establish the asymptotic properties of solutions to
problem (31).

LEMMA 2. If F € C°(TI), B € C=(S), B(&) = 0 for & > Ry > 0, and condition (32)
holds, then there erxists the unique solution Z € H(II) to problem (31), which admits the
differentiated asymptotic representation

Z(6) = { O(exp(—01&2))  as & —+oo (41 > 0), (33)

a;+0(p 1) as p—oo.

If the functions F and B are odd with respect to &, then the solution Z € H(I1) decays
exponentially at infinity.
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In the next sections, we will see that the leading terms of (11) have the form

e*lyt (x1,0) + 5“_%1::_%(56130) + &* (I"a(:cl,O) + WA (&) 8z, vt (21,0) +

. 4 1
+ |w| Wa(§) 822,-'L.'G_1(:z:1,0))|€=5__1z R 1 3 ora= 1). (34)
Substituting (34) in problem (1) and collecting the coefficients of the same power of &, we
arrive problems for the functions W; and W5. So, the function W5 must be a non-trivial

solution of the homogeneous problem (31), the function W; must be a solution of problem
(31) with right-hand sides F(£) =0, B(§) = —v(&).

COROLLARY 1. The homogeneous problem (31) has nontrivial solution Wy, which does not
belong to H(II); this solution has the differential asymptotics

] Wl + O(exp(—6583)) as & — +oo,

Wald) = { —rm ' lnp+e, + O(p™Y) as p—oo (£ <0), (35)

and is even relative to &;; moreover, fu Wy (&', 0)d¢' = 0. Here the constant d5 > 0.

Problem (31) with right-hand sides F(£) = 0, B(§) = —11 (&) has nontrivial solution

Wi, which does not belong to H(IT); this solution has the differential asymptotics
; =61 + Olexp(=6:1&2)) a5 & — +o0,

W = : 36

6= Olexp(~01p)  as p—oo (& <0), Wil

and is odd relative to & (0, > 0).

Proof. Such a nontrivial solution to the homogeneous problem can be found in the form

Wa(€) = =7 " x0(p) Inp + |w|™x0(&) & + Za(8),

where xo(t), t € R, is a smooth cut-off function equal to 0 on (—oc, 1] and to 1 on [2, +00);
Zs is the solution to problem (31) with right-hand sides

F(&) = —n7'[A, xo](Inp) + |w|7'[A, x0] (&), B(€) =0,

here [A, B] = AB — BA is the commutator of the operator A and B. The existence of Z,
follows from Lemma 1 (F has compact support and [, F(€)d€ = 0). It remains to observe
that F is even relative to & and to apply Remark 2 and Lemmas 2. The absence of a constant
term in the asymptotics of W, as & — +oc leads to the zero mean over the cross-section of
the cylinder I1..

Analogously we prove the second part. The solution W) with asymptotics (36) is sought
in the form W,(€) = —xo(&) & + Z1(€), where Z; is the solution to problem (31) with
right-hand sides F(€) = —x§(&2) &, B(E) = —(1 — x0(&2)) 1 (€).

2.6. A singular solution of the Neumann problem in . Substituting (10), (12) in (1)
and collecting the coeflicients of the powers of £, we arrive the following problem for the
leading term vy

—Avp(z) = mvy(x), €,

9y (x) = 0, z € 8% \ I. (37)
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It is obvious that the eigenvalues (14) of problem (13) and the corresponding eigenfunctions,
which is smooth in €, satisfy (37).

The method of matched asymptotic expansions that we use here requires that the
solution of problem (37) and (31) admit similar representations (respectively, near the
segment I, = {z : |z1| < h, T2 = x3 = 0} and near infinity). Since a logarithmic component
is present in the solution to the homogeneous problem:(31) (see (35)), we are forced to deal
with a solution to (37) that has singularities on I,. The basic principles of constructing
such solutions were formulated in [2, 3, 10]; here we use the approach suggested in [1]. From
results of this paper it follows the following lemma.

LEMMA 3. Let o be an eigenvalue of the Neumann problem (13) with the multiplicity q (the
case ¢ = 0 does not exclude), @1, ..., ®, are the corresponding eigenfunctions orthonormalized
in Ly(Q). Let b be a function from WL (I,) such that (b, ®; |Ih)L2U.ﬁ) =l

Then there exists a solution to problem (37) with the following asymptotics
vg (z) := U(z; b) = —r~'b(zy) Inr + (Jb) (1) +

q
4+ Z Qﬁiq—‘”[h(.’r]) - O(T’(l + |lr1-r|)), T = :L'"f + .Tf% — 0, (38)

1—1

where J is the integral operator defined by the formula

h
(Th¥ey) = /_; (b(s) — b(z1))G(x1,0,0;8; Ao) ds +
+h

+ 0

+b(z){(x) ' In2 — ¢° (z; — 0,21) — g} (z1 +0,21)}. (39)

In (39), G is the 4h—periodic in z; solution to the problem

_AG(55m) — nGlmsm) = —TL, ®i(s)8(z), v,
BUG(:C 53 TD) = 0: T e FE \ {S}, (4[})

(G(';S;Tﬂ):@i)ﬂa = 0; b= laveoiqy § EI’Z?M

GlEgin) & m—}—(’)ﬂln |z —s||), z—s,

where the symbol s denotes both the point (s,0,0) € Iy, and its coordinate on the segment
Ly; g is a 4h—periodic primitive for the function I, 3 1 — G(21,0,0: ;7). Due to the
last condition in (40), g can be represented in the form

g(z1,8) =+(27) ' In|z; — 5| £ ¢(z1,s) for £z > *s.

The properties of the operator (39) were studied in [1]; we discuss them briefly. Let
H; (1) denote the space of restrictions to Iy of the 4h—periodic functions belonging to the
Hormander space Hf, (o) with the weight function p,(€) = (14 In|¢] + |In|&]|)°. In other
words, the norm in Hj (I3;) is glued from the norms

1/2
vl ez, (2o ®) = ([% 12(€) | F(é)? d{) ;

93



T. A. Mel'nyk

where F~ denotes the Fourier transform of . The embedding Hm(fgh) C Lo(I3) is compact
for s > 0. From [1] it follows that operator J : H?(I),) — H, *(I}) : (Ih) is continuous,

symmetric (as an operator in Ls(f,) with the domain of definition H'h-1 (1)), discrete (for
Ag > 0 large enough its resolvent is a compact operator in Ly([I},)), the eigenvalues of J form
a sequence '

AMZ>2A2>...270... = -, (41)

and corresponding eigenfunctions {b, : p € N} belong to C*°(I,) and can be orthonormalized
in Ly(I).

3. Asymptotic approximations and estimates.

3.1. The case 7y € 0q, \ op. Let 75 be an eigenvalue of problem (13) with multiplicity
q; ®1,...,®, are the corresponding eigenfunctions ortonormalized in Ly(£2). In this case
the first term in (15) is a linear combination

vg ( Z am) D;(z), =z € Q, (42)

where the constants a( ), i=1,...,q, will be defined further.
Applying the method of matched asymptotic expansions to the leading terms of (10)
and (11) and to the leading terms of (11) and (9), we obtain that t‘+1(.’L'1‘ 0) = 0 and

wo(x1,€) = vy (21,0,0) = vy (21,0). Since 7 is not an eigenvalue of problem (27), then v™ L&

wl

must be trivial. As a result, vy is the unique solution to the following problem

—6303(3713552) =1Tq Ug_($13$2)1 (z1,x2) € Gy,

ty (21,0) = vy (23, 0,0 5 L8 1) =0, =€l (43)

Obviously,
( I, U 0

cos(\/—fj

Matching the next following terms of (9) - (11), we get that all terms in (9), (10), (11)
and (12) at k = 2p, p € N, are trivial and these asymptotic expansions are expansions with
respect to the nonnegative integral powers of «.

For the function v;, we obtain the following relations

vy (Ty527) = cos \/To(l — x3), (@1,22) € Gy. (44)

Al = mv] = T1vy, & € f; Q.07 =0, ‘gedfls\ 1 (45)

and because of (34) (o = 1), (35), (36), and (44), v; must have the logarithmic singularity

i (@) = =7l 7o tan(y/7s 1) vo(z) I+
To 70 )’](0(:31) (?l'-l Ine + Cf_,_,) gt 1-"‘1(:1?1,0) A8 Ty 0, (46)
where vo(21) = v (£1,0,0) = v5 (21,0) = Y7 , @ 3 (I> 1, 1 € Ip.
Comparing problem (45) with problem (37) and using the representation (38) with
a; =0, i=1,...,q, we can state that there exists such a singular solution
vy (z) = |w| /7o tan(y/m 1) U(z; 70), « € Qo (47)
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to problem (46) if
na@® = — 2|w| /7 tan(y/7 1) Ma®, (48)

where al® = (a.(ln), af;)}) and M = {(®;, <I>j)‘, , 4, =1,...,q} is the Gram matrix,
which is symmetric and nonnegative. '

From the spectral problem (48) we define 7, in (12) and the constants {a( ]} in (42).
The spectral problem (48) has ¢ eigenvalues and we assume that they are simple, i.e.,

< .. < 79; the corresponding eigenvectors a” = (ag?),..., Eg)) i=1,...,q, can
be orthonormalized by the following way t( ) -‘;0) = i, 6,4 =1,...,¢. 50, let 1; be an
eigenvalue of (48), @® = (a&oj, L ag-,m) is the corresponding normalized eigenvector. Then

the function vy is defined and ||vg || L,(0,) = 1-
The singular solution v; has the asymptotics

z) ~ |w| /7o tan(y/T!) ((Jﬁm)(x]) — 7 y(zy) Inr + O(r(1 + lnr)))_, r—0

(see Lemma 3). Comparing this asymptotics with (46) and taking into account the matching
principle, we deduce the second boundary condition

Vi(21,0) = lwl v/ tan(y/ 1) ((J70)(21) — 20(@1) (7" Ine + )

for the equation (26) at £ = 1 and unique determine the function V7.

As result, we have defined the leading terms of the outer expansions (9), (10), the inner
expansion (34) (e = 1), and the expansion (12) and can construct a global asymptotic
approximation U(-, ) belonging to H'(£2;) :

Uz, c) = (1-x(r/e)) (v5 (z) + evy () +
(T"ar(ﬁfl:o) + & (Vi(z1,0) + Wi(z/e) Oivg (z1,0) + |w| Wa(z/e) 321?3(551:0)))_
)

X)L~ x(5) (3l@r) + elolytan(ym( (o) @) =~ Inr)), @ € O, (49)

U(z,€) = vg (z1,72) + 5(1’1(371:552) + Yi(z1/¢) Ovvg (21, T2) +

x(z) Y (I

where y is a smooth cut-off function such that x(¢) = 1 if |{| < Ry := 47! min{/, b, min ¢},
and x(t) = 0 if |t| > 2Ry; Yi(¢) = —t + [t + 3] ([t] is the integral part of ¢).

Putting U(-,¢) and 7o + é7; in problem (1) instead of u(-,£) and A(e) respectively and
estimating the residuals, we deduce the inequality

Ji’gw’}(g) = }'1(?)51',1 = 5_13251',2)31"03'(1311 U))! xz € G., (50)

NUGe) = (1 +70+emn) AU 8)llm@.) < ce®?, (51)
where the constant ¢ is independent of . The first part of Lemma 12 in [12] yields the

estimate

) 1 i AU — (1 4+ 710 +em) U
min = <
meM 1+T|J—|—ST1 1+)km(5) “{j”fi

& pedl2, (52)
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which partly justifies the asymptotics constructed above for the solutions of the spectral
problem (1).

3.2. The case 79 € op \ 0g,. In the previous subsections everything has been
prepared in order to determine terms of the asymptotic expansions for the eigenvalue A(¢)
and eigenfunction u(-, <) of the original perturbed problem (1) for this case. But, as distinct
from before considered case, the outer and i inner asymptotic expansions for the eigenfunction
are expansions with respect to the scale {¢¥=2 : k € Ny}, and the eigenvalue (<) is expanded
in an integer power series about ¢.

Let 19 be an eigenvalue of problem (27). Then v*, (z°) = v-1(@1)p(2s2), 2° € D, the
corresponding eigenfunction, where ¢ is defined by formula (29). The v 1 is involved in the

determination of the first term v of the outer expansion (10), namely,
2

vy (z) = lw| VR U(z;57_1), = €,

where U is defined by (38).
For the function V% we obtain the following problem

_a?

1?2_.

360 - V(@) = oty (), 22 € (0,0
(1,0) = p]ﬁ((; _%)(3:1)—’y_%(a;l)(fr_l]ns—f—cw)), 0r,Vy(1,1) = 0.

The solvability condition for this problem reads as follows

1 "r‘_%(xl) = — @'m ((qu_%)(.r]) - “/_&(:1:1)( e & cw)) Ty € I, (53)

Relation (53) is the spectral problem for the operator J : Hli(fh) — H, ?(I), which is
continuous, symmetric, and discrete (see (39)). Thus el = by and

= Tfk) =0 |w| 3—17-0 (fr_l Ine + ¢, — ;’\k), k€N, (5‘1)

where A; is an eigenvalue and by is the corresponding eigenfunction of the operator .J.
Now, similarly as in § 3.1, we construct a global asymptotic approximation U(-,¢)
belonging to H'(f2.) for the eigenfunction u(-, ) :

U,) = e (L= X/ @) + x(0) (Vi @1,0) + v/ o] buar) Wa(d)) -
— x(r) (1= x(r/e)) |w| /7o bx(z1) (Ax — Tr‘lln:r))g z € Qo; (55)

(1, 22) 4 H5( )61U 1($1,$2)+

S
—
8
n
S
Il
fT]
|oi--
Loy

(1, 29) + g2 (Tf

T
3 Ne
+ X(22) vTo b (1) (Jw|Wa(z/e) — ¢ 13:2)) z € G, (56)

1
2

and prove estimates similarly to the estimates (51) and (52).
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3.3. Justification. To justify the constructed asymptotic approximations we use
the scheme proposed in [9]. The basic spaces and the corresponding operators are specified
in subsections 1.2 and 2.4. Special extension operator is constructed similarly as in [8].
Conditions C5 and C6, in fact, has been verified in the previous subsections: the result of
the action of the operator R, is the construction of the approximation function U on the basis
of an eigenfunction of the limit spectral problem (30). Applying this scheme to problems (1)
and (30), we get the following theorems.

THEOREM 1. Let 79 € oq, \ op and its multiplicity is equal to g; 'r_l(s), i B s dyg, ave
eigenvalues of (48). Then there exist exactly q eigenvalues of problem (1) with the following
asymptotics

Wil o~ b ert L O(, =i

For the corresponding eigenfunctions we have the following estimates
[u®(,e) = U, 8)llm@.) < Cie®?, i=1,...,4,

where U is defined by (49) and (50).
THEOREM 2. Let 7o € op \ 0a,; 77 (In€), k € N, are defined by (54). Then for any there
exists an eigenvalues A\ (g) of problem (1) with the following asymptotics

28(e) i g e ing) + OF2). kel

Let Ay, be a simple eigenvalue of the integral operator J. Then
W, €) = UO )l < Coc®’,

where U™ is defined by (55) and (56).

THEOREM 3. (THE HAUSDORFF CONVERGENCE) Only the points of the spectrum of problem
(30) are accumulation points for the spectrum of problem (1) as e — 0.

The eigenvalues {\,(¢)} at fixed indices n, are usually called low eigenvalues; the
corresponding proper-oscillations are called low frequency oscillations.

DEFINITION 1. The value T := sup,cN lim,_,o An(¢) is called the threshold of low
eigenvalues of problem (1).

THEOREM 4. (LOW-FREQUENCY CONVERGENCE) The threshold T = n* /4%
Let pg < j1 < ... < i, be eigenvalues of problem (13), which are less than T, and
Hmg+1 2 T Then Vn = 11 23 ceey Mg

An(€) = Un as €—0.

For any n > my
(&) =2 T as e—0.
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